Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473753

RESUMO

Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo , Linhagem Celular Tumoral , Neoplasias Cutâneas/patologia , Vitaminas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos , Proliferação de Células
2.
Free Radic Biol Med ; 210: 286-303, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040270

RESUMO

Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Vitamina D , Humanos , Vitamina D/farmacologia , Vitamina D/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Queratinócitos/metabolismo , Vitaminas/farmacologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Genômica , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
3.
Mol Cell Endocrinol ; 582: 112124, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123121

RESUMO

BACKGROUND: Human skin is the natural source, place of metabolism, and target for vitamin D3. The classical active form of vitamin D3, 1,25(OH)2D3, expresses pluripotent properties and is intensively studied in cancer prevention and therapy. To define the specific role of vitamin D3 receptor (VDR) and its co-receptor retinoid X receptor alpha (RXRA) in genomic regulation, VDR or RXRA genes were silenced in the squamous cell carcinoma cell line A431 and treated with 1,25(OH)2D3 at long incubation time points 24 h/72 h. Extending the incubation time of A431 WT (wild-type) cells with 1,25(OH)2D3 resulted in a two-fold increase in DEGs (differentially expressed genes) and a change in the amount of downregulated from 37% to 53%. VDR knockout led to a complete loss of 1,25(OH)2D3-induced genome-wide gene regulation at 24 h time point, but after 72 h, 20 DEGs were found, of which 75% were downregulated, and most of them belonged to the gene ontology group "immune response". This may indicate the existence of an alternative, secondary response to 1,25(OH)2D3. In contrast, treatment of A431 ΔRXRA cells with 1,25(OH)2D3 for 24 h only partially affected DEGs, suggesting RXRA-independent regulation. Interestingly, overexpression of classic 1,25(OH)2D3 targets, like CYP24A1 (family 24 of subfamily A of cytochrome P450 member 1) or CAMP (cathelicidin antimicrobial peptide) was found to be RXRA-independent. Also, immunofluorescence staining of A431 WT cells revealed partial VDR/RXRA colocalization after 24 h and 72 h 1,25(OH)2D3 treatment. Comparison of transcriptome changes induced by 1,25(OH)2D3 in normal keratinocytes vs. cancer cells showed high cell type specific expression pattern with only a few genes commonly regulated by 1,25(OH)2D3. Activation of the genomic pathway at least partially reversed the expression of cancer-related genes, forming a basis for anti-cancer activates of 1,25(OH)2D3. In summary, VDR or RXRA independent genomic activities of 1,25(OH)2D3 suggest the involvement of alternative factors, opening new challenges in this field.


Assuntos
Calcitriol , Carcinoma de Células Escamosas , Humanos , Calcitriol/farmacologia , Calcitriol/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Genômica , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Vitamina D3 24-Hidroxilase
4.
Nutrients ; 15(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960182

RESUMO

PDIA3 is an endoplasmic reticulum disulfide isomerase, which is involved in the folding and trafficking of newly synthesized proteins. PDIA3 was also described as an alternative receptor for the active form of vitamin D (1,25(OH)2D3). Here, we investigated an impact of PDIA3 in mitochondrial morphology and bioenergetics in squamous cell carcinoma line A431 treated with 1,25(OH)2D3. It was observed that PDIA3 deletion resulted in changes in the morphology of mitochondria including a decrease in the percentage of mitochondrial section area, maximal diameter, and perimeter. The 1,25(OH)2D3 treatment of A431∆PDIA3 cells partially reversed the effect of PDIA3 deletion increasing aforementioned parameters; meanwhile, in A431WT cells, only an increase in mitochondrial section area was observed. Moreover, PDIA3 knockout affected mitochondrial bioenergetics and modulated STAT3 signaling. Oxygen consumption rate (OCR) was significantly increased, with no visible effect of 1,25(OH)2D3 treatment in A431∆PDIA3 cells. In the case of Extracellular Acidification Rate (ECAR), an increase was observed for glycolysis and glycolytic capacity parameters in the case of non-treated A431WT cells versus A431∆PDIA3 cells. The 1,25(OH)2D3 treatment had no significant effect on glycolytic parameters. Taken together, the presented results suggest that PDIA3 is strongly involved in the regulation of mitochondrial bioenergetics in cancerous cells and modulation of its response to 1,25(OH)2D3, possibly through STAT3.


Assuntos
Isomerases de Dissulfetos de Proteínas , Vitamina D , Vitamina D/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas/metabolismo , Vitaminas , Respiração Celular , Glicólise
5.
Steroids ; 199: 109288, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37549780

RESUMO

An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.


Assuntos
Carcinoma de Células Escamosas , Isomerases de Dissulfetos de Proteínas , Vitamina D , Humanos , Carcinoma de Células Escamosas/genética , Genômica , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Receptores de Calcitriol/genética , Vitamina D/metabolismo , Canais de Cátion TRPV/metabolismo
6.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201216

RESUMO

The genomic activity of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), whilst non-genomic is associated with protein disulfide isomerase family A member 3 (PDIA3). Interestingly, our recent studies documented that PDIA3 is also involved, directly or indirectly, in the modulation of genomic response to 1,25(OH)2D3. Moreover, PDIA3 was also shown to regulate cellular bioenergetics, possibly through the modulation of STAT signaling. Here, the role of VDR and PDIA3 proteins in membrane response to 1,25(OH)2D3 and calcium signaling was investigated in squamous cell carcinoma A431 cell line with or without the deletion of VDR and PDIA3 genes. Calcium influx was assayed by Fura-2AM or Fluo-4AM, while calcium-regulated element (NFAT) activation was measured using a dual luciferase assay. Further, the levels of proteins involved in membrane response to 1,25(OH)2D3 in A431 cell lines were analyzed via Western blot analysis. The deletion of either PDIA3 or VDR resulted in the decreased baseline levels of Ca2+ and its responsiveness to 1,25(OH)2D3; however, the effect was more pronounced in A431∆PDIA3. Furthermore, the knockout of either of these genes disrupted 1,25(OH)2D3-elicited membrane signaling. The data presented here indicated that the VDR is essential for the activation of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A), while PDIA3 is required for 1,25(OH)2D3-induced calcium mobilization in A431 cells. Taken together, those results suggest that both VDR and PDIA3 are essential for non-genomic response to this powerful secosteroid.


Assuntos
Carcinoma de Células Escamosas , Isomerases de Dissulfetos de Proteínas , Vitamina D/análogos & derivados , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Receptores de Calcitriol , Sinalização do Cálcio , Cálcio
7.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884710

RESUMO

Interleukin 33 (IL-33) belongs to the IL-1 family and is produced constitutively by epithelial and endothelial cells of various organs, such as the skin. It takes part in the maintenance of tissue homeostasis, repair, and immune response, including activation of Th2 lymphocytes. Its involvement in pathogenesis of several inflammatory diseases including psoriasis was also suggested, but this is not fully understood. The aim of the study was to investigate expression of IL-33 and its receptor, ST2, in psoriasis, and the effects of the active form of vitamin D (1,25(OH)2D3) on their expression in skin cells. Here we examined mRNA and protein profiles of IL-33 and ST2 in 18 psoriatic patients and healthy volunteers by qPCR and immunostaining techniques. Potential effects of 1,25(OH)2D3 and its receptor (VDR) on the expression of IL-33 and ST2 were tested in cultured keratinocytes, melanocytes, fibroblasts, and basal cell carcinoma cells. It was shown that 1,25(OH)2D3 effectively stimulated expression of IL-33 and its receptor ST2's mRNAs in a time-dependent manner, in keratinocytes and to the lesser extends in melanocytes, but not in fibroblasts. Furthermore, the effect of vitamin D on expression of IL-33 and ST2 was VDR-dependent. Finally, we demonstrated that the expression of mRNA for IL-33 was mainly elevated in the psoriatic skin but not in its margin. Interestingly, ST2 mRNA was downregulated in psoriatic lesion compared to both marginal tissue as well as healthy skin. Our data indicated that vitamin D can modulate IL-33 signaling, opening up new perspectives for our understanding of the mechanism of vitamin D action in psoriasis therapy.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Pele/efeitos dos fármacos , Vitamina D/farmacologia , Adolescente , Estudos de Casos e Controles , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Queratinócitos/metabolismo , Psoríase/metabolismo , Psoríase/patologia , Pele/metabolismo , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...